

WHE0146UC

Description

The WHE0146UC is a light to digital converter which combines an advanced proximity sensor and a high efficiency infrared VCSEL. The pitch of proximity sensor and VCSEL is only 1.0 mm

Proximity sensor (PS) built-in an 940nm optical filter for ambient light immunity, so PS can detect reflected IR light with high precision and excellent rejection.

WHE0146UC detects the human or object approach by reflection of IR light. It built in algorithm auto to calibrate the crosstalk between the sensor and optical cover.

Features

- I²C interface (Fast Speed Mode at 400kHz/s)
- Dedicated Interrupt Pin
- Supply Voltage Range from 1.7V to 3.6V
- Operating temperature from -40°C to +85°C
- Proximity Sensor
 - Auto calibration cross-talk
 - Selectable gain and resolution (up to 12-bit).
 - 4 Programmable VSCEL Current Output, up to 20mA
 - Pulse Width Selection, PGA Gain Selection and Pulse Count Selection

Applications

- Handset device
 - TWS, tablet, PDA, mobile POS

Ordering Information

Ordering Code	Packaging	MOQ
WHE0146UC	Tape and reel	TBD

WHE0146UC

Block Diagram

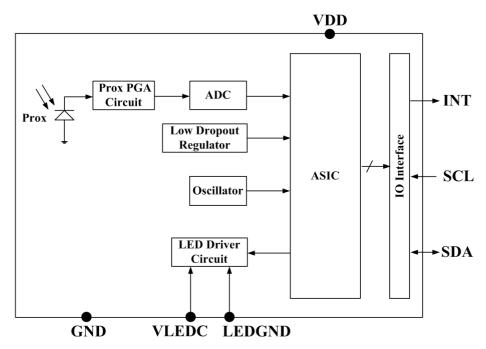
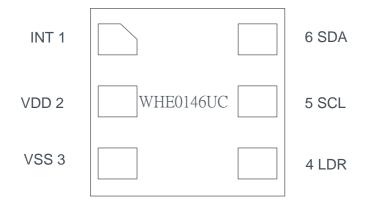



Fig. 1 Block Diagram

I/O Pins Configuration

Pin	I/O Type	Pin Name	Description						
1	I	INT	Interrupt pin						
2	Р	VDD	Power Supply						
3	Р	GND	Ground						
4	Р	LDR	VCSEL anode						
5	I	SCL	I2C serial clock line						
6	I/O	SDA	I ² C serial data line						

WHE0146UC

Absolute Maximum Ratings*

Parameter	Symbol	Value	Unit
Supply Voltage	VDD	4.5	V
I ² C Bus Pin Voltage	SCL, SDA, INT	-0.2 to 4.5	V
I ² C Bus Pin Current	SCL, SDA, INT	10	mA
LDR Pin Voltage	VLEDC	-0.2V to VDD + 0.5V	V
Operating Temperature	Tope	-40 to +85	°C
Storage Temperature	Tstg	-45 to +100	°C
ESD Rating	Human Body Model	2	KV

^{*}Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to ground. Currents are positive into, negative out of the specified terminal.

Recommended Operation Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Supply Voltage Note1	V_{DD}	1.7		3.6	V	
I ² C Bus Pin Voltage	V_{Bus}	1.62	1.8	VDD	V	$V_{Bus} \leq V_{DD}$
Operating Temperature	T_{ope}	-40		+85	°C	
I ² C Bus Input High Voltage	V _{IH_SCL} , V _{IH_SDA}	1.4			V	
I ² C Bus Input Low Voltage	V _{IL_SCL} , V _{IL_SDA}			0.5	V	
SDA Output Low Voltage	V	0		0.4	V	3mA sinking current
3DA Output Low Voltage	V_{OL_SDA}	0		0.6	V	6mA sinking current
INT Output Low Voltage	$V_{\text{OL_INT}}$	0		0.4	V	3mA sinking current

Notes:

- The power supply need to make sure the VDD slew rate at least 0.5 V/ms. WHE0146UC have power
 on reset function. When VDD drops below 1.2V under room temp, the IC will be reset automatically.
 Then power back up at the requirement slew rate, and write registers to the desired values.
- 2. The specs are defined under VDD=3.3V, T=25°C

传真: +86-0755-83279017-8007

WHE0146UC

Electrical & Optical Specifications

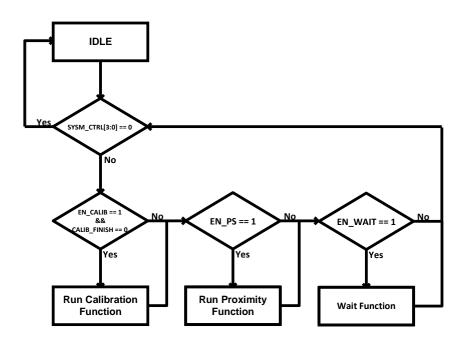
Unless otherwise specified, the following specifications apply over the operating ambient temperature $T = 25^{\circ}C$, VDD = 3.3V.

Electrical Characteristics	Symbol	MIN	TYP	MAX	Notes	Unit
	I _{DD}		35		EV=0, Note1	μΑ
Active Supply Current	I _{PD}		1		Sleep mode,Ev=0,Note2	uA

Waiting Characteristics	Symbol	MIN	TYP	MAX	Notes	Unit
Wait time unit	WTIME	6.5		1664	unit=6.5ms	ms

PS Characteristics	Symbol	MIN	TYP	MAX	Notes	Unit	
Sensing Gain, relative to x1	PGA_PS		2				
setting	PGA_P3		4				
PS ADC integration time step size	<u>PStep</u>		0.256			ms	
PS ADC number of integration unit	<u>PSCONV</u>	1		16		Unit	
Full ADC counts per step		0		255	PSCONV=1	count	
Full scale ADC counts value		0		4095	PSCONV=16	count	
LED pulse period	ITW PS	0.016		0.256		ms	
LED pulse count	ITC PS	1		16		pulse	
			5				
LED Driving Current	DI DD		10				
LED Driving Current	<u>PLDR</u>		15			mA	
			20				
IR Peak Wavelength	<u>λp</u>		940			nm	

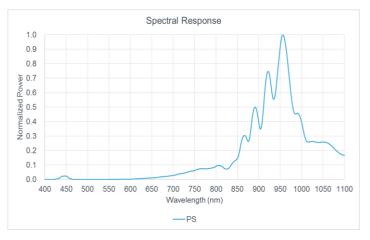
Notes:


- 1. EN_WAIT=1, EN_PS=1, NUM_AVG=0, WTIME=8
- 2. Setting EN_FRST=1

WHE0146UC

State Machine

There are two operation mode, PS and Calibration mode. The state machine is shown below:


传真: +86-0755-83279017-8007

WHE0146UC

Typical Characteristics Curves

Unless otherwise specified, the following specifications apply over the operating ambient temperature $T = 25^{\circ}C$, VDD = 3.3V.

Angular Response 100% 90% 80% 70% Normalized Intensity 60% 50% -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Degree ─0 Degree ─90 Degree

Fig. 2 PS Spectral Response

Fig.3 PS Angular Response

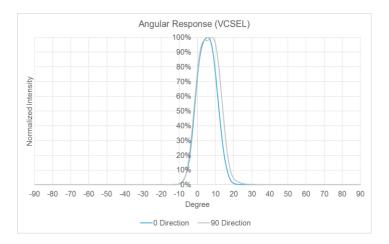


Fig.4 VCSEL Angular Response

WHE0146UC

I²C Write Format

S	Slave Addr 7 Bit	W	Α	Reg Addr 8 Bit	Α	Data 8 Bit	Α	Р
---	---------------------	---	---	-------------------	---	---------------	---	---

I²C Block Write Format

S	Slave Addr 7 Bit	W	Α	Reg Addr 8 Bit	Α	Data 8 Bit	Α		Α	Data 8 Bit	Α	Р
---	---------------------	---	---	-------------------	---	---------------	---	--	---	---------------	---	---

I²C Read Format

S 38 T Bit W A 8 Bit A S 38 T Bit R A 8 Bit N

I²C Block Read Format

S	Slave Addr 7 Bit	W	Reg Add 8 Bit	dr A	S	Slave Addr 7 Bit	R	Α		Data 3 Bit	Α	
									Α	Data 8 Bi		N P

Master to Slave S Start Condition, 1 Bit

Slave to Master P Stop Condition, 1 Bit

W Write, Set 0 for write, 1 Bit

R Read, Set 1 for read, 1 Bit

A Acknowledge(ACK), Set 0, 1 Bit

N Non acknowledge(NACK), Set 1, 1 Bit

I²C Slave Address and R/W bit

This address is seven bits long followed by an eighth bit which is a data direction bit (R/W). A '0' indicates a transmission (WRITE), a '1' indicates a request for data (READ). The slave address of this device is 0x38.

传真: +:86-0755-83279017-8007

Register Set

The WHE0146UC is operated over the I2C bus with registers that contain configuration, status, and result information. All registers are 8 bits long.

Address	Name	Туре	Default value	Description
0x00	SYSM_CTRL	R/W	0x00	PS/CALIB operation mode control, waiting
0,000	OTOM_OTIL	10,00	0,000	mode control, SW reset
0x01	INT_CTRL	R/W	0x07	Interrupt pin control, interrupt persist control
0x02	INT_FLAG	R/W	0x80	Interrupt flag, error flag, power on
0.02	INI_I LAG	17/ / /	0,000	reset(POR) flag
0x03	WAIT_TIME	R/W	0x00	Waiting time setting
0x06	PS_GAIN	R/W	0x00	LED setting, PS analog gain setting
0x07	PS_PULSE	R/W	0x00	PS number of LED pulse
0x08	PSPD_CONFIG	R/W	0x02	PS PD setting
0x09	PS_TIME	R/W	0x00	PS integrated time setting
0x0A	PS_FILTER	R/W	0xBF	PS filter setting
0x0B	PERSISTENCE	R/W	0x11	PS persistence setting
0x10	PS_THRES_LL	R/W	0x00	PS low interrupt threshold - LSB
0x11	PS_THRES_LH	R/W	0x00	PS low interrupt threshold - MSB
0x12	PS_THRES_HL	R/W	0xFF	PS high interrupt threshold - LSB
0x13	PS_THRES_HH	R/W	0xFF	PS high interrupt threshold - MSB
0x14	PS_OFFSET_L	R/W	0x00	PS offset level - LSB
0x15	PS_OFFSET_H	R/W	0x00	PS offset level - MSB
0x17	ERROR_FLAG	R	0x00	Error flag
0x1A	PS_DATA_L	R	0x00	PS output data - LSB
0x1B	PS_DATA_H	R	0x00	PS output data - MSB
0x26	CALIB_CTRL	R/W	0x0F	PS calibration control
0x28	CALIB_STAT	R	0x00	PS calibration status
0x2A	MANU_CDAT_L	R/W	0x00	Manual calibration data - LSB
0x2B	MANU_CDAT_H	R/W	0x00	Manual calibration data - MSB
0x2C	AUTO_CDAT_L	R	0x00	Automatic calibration data - LSB
0x2D	AUTO_CDAT_H	R	0x00	Automatic calibration data - MSB
0xBC	PROD_ID_L	R	0x11	Product ID - LSB
0xBD	PROD_ID_H	R	0x42	Product ID - MSB

WHE0146UC

SYSM CTRL

0x00		SYSM_CTRL, System Control (Default = 0x00)									
BIT	7	7 6 5 4 3 2 1 0									
R/W	SWRST	EN_WAIT	EN_FRST	0	0	EN_CALIB	EN_PS	0			

SWRST: Software reset. Reset all register to default value.

0: (Default)

1: Reset will be triggered.

EN WAIT: Waiting time will be inserted between two measurements.

0: Disable waiting function. (Default)

1: Enable waiting function.

EN FRST:

0: Enable (Brown out Reset circuit enable). (Default)

1: Disable (Brown out Reset circuit disable).

EN CALIB: Enables calibration (CALIB) function.

0: Disable CALIB function. (Default)

1: Enable CALIB function.

EN PS: Enables PS function.

0: Disable PS function. (Default)

1: Enable PS function.

INT CTRL

0x01	INT_CTRL, interrupt pin control (Default = 0x07)										
BIT	7	6 5 4 3 2 1 0									
R/W	0	0	PS_ SYNC	0	0	EN_ CALIBINT	EN_ PINT	1			

PS SYNC: Measurement is pended when PS interrupt is triggered. Until clear the interrupt then start the next measurement.

0: Disable pending PS function. (Default)

1: Enable pending PS function.

传真: +86-0755-83279017-8007

WHE0146UC

EN CALIBINT: The CALIB interrupt (INT_CALIB) flag can trigger the INT pin to low.

0: Disable INT_CALIB effect INT pin.

1: Enable INT_ CALIB effect INT pin. (Default)

EN PINT: The PS interrupt (INT_PS) flag can trigger the INT pin to low.

0: Disable INT_PS effect INT pin.

1: Enable INT_PS effect INT pin. (Default)

INT_FLAG

0x02		INT_FLAG, interrupt flag (Default = 0x80)									
BIT	7	7 6 5 4 3 2 1 0									
R/W	INT_POR	DATA_ FLAG	OBJ	0	0	INT_ CALIB	INT_PS	0			

INT POR: Power-On-Reset Interrupt flag trigger the INT pin when the flag sets to one. Write zero to clear the flag.

0:

1: This bit will be set to one when it satisfy one of the following conditions:

- Power On
- VDD < 1.2V
- **SWRST**

DATA FLAG: It shows if any data is invalid after completion of each conversion cycle. This bit is read-only.

0: Data valid.

1: Data invalid.

OBJ: Object Detection Bit. It shows the position of the object. This bit is read only.

0: Object disappear.

1: Object appear.

INT CALIB: CALIB interrupt flag. Write zero to clear the flag.

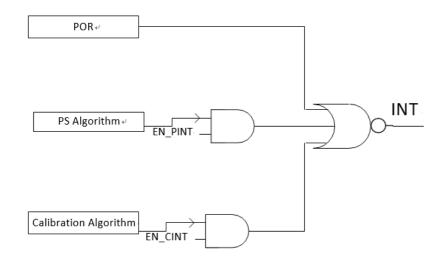
0: CALIB Interrupt not triggered or be cleared.

1: CALIB Interrupt triggered.

INT PS: PS interrupt flag. It correlation with PS_DATA and PS high/low threshold. Write zero to

电话: +86-0755-83279017-8007

传真: +86-0755-83279017-8007


WHE0146UC

3

clear the flag.

- 0: PS Interrupt not triggered or be cleared.
- 1: PS Interrupt triggered.

PS Behavior:

Correlative register:

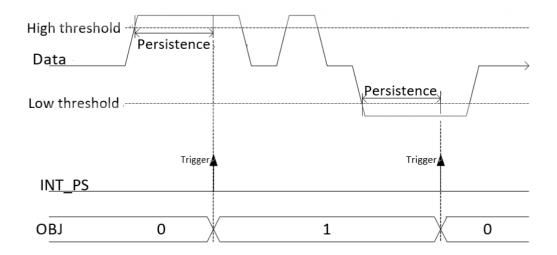
The PS Interrupt (**INT PS**, register 0x02, bit1),

The PS Persistence (PRS PS. register 0x0B, bit4 to bit7),

The PS Data (**PS DATA**, register 0x1A to 0x1B),

The PS Low Threshold (**PS THRES L**, register 0x10 to 0x11),

The PS High Threshold (**PS THRES H**, register 0x12 to 0x13).


INT PS triggered condition:

- 1. Rule of active interrupt:
 - i. When OBJ is zero, PS DATA > PS THRES H.
 - ii. When OBJ is one, PS DATA < PS THRES L.
- 2. If **PS DATA** meets the rule, the interrupt **counter** increases one.
 - If **PS DATA** fails in the rule, the interrupt counter will be cleared.
- 3. When the counter value equal to <u>PRS PS</u>, the <u>OBJ</u> flag will be inverted, <u>INT PS</u> will be triggered, and clear interrupt counter.

If <u>PRS PS is</u> set to zero, <u>the threshold</u> setting will be ignored and <u>DATA</u> will meets the active interrupt rule forcibly

WHE0146UC

WAIT TIME

0x03		WAIT_TIME, waiting time (Default = 0x00)									
BIT	7	7 6 5 4 3 2 1 0									
R/W	WTIME										

WTIME: This register controls the time unit of waiting state which is inserted between any two measurements. It is 6.5 ms per time unit.

0x00: 1 time unit. (Default)

0x01: 2 time units

0xFF: 256 time units

PS_GAIN

0x06 PS_GAIN, PS analog gain and LED control (Default = 0x00)											
BIT 7 6 5 4 3 2 1 0											
R/W	0	0	IRDR	_SEL	0	0	PGA	_PS			

IRDR SEL: It configures the peak current of the internal LED driver.

0x0: 5mA (Default)

0x1: 10mA 0x2: 15mA 0x3: 20mA

- 12

WHE0146UC

PGA PS: PS sensing gain.

0x0: x1 (Default)

0x1: x2 0x2: x4

PS_PULSE

0x07 PS_PULSE, PS integration pulse configure(Default = 0x00)											
BIT	7	7 6 5 4 3 2 1 0									
R/W	0	0	0	0	ITW_PS						

ITW PS: It controls LED pulse width in PS function mode. Pulse width is 16us per unit.

0x00: 1T (default).

0x01: 2T

0x0F: 16T

PSPD_CONFIG

0x08		PS_PULSE, PS pulse count control(Default = 0x00)									
BIT	7	6 5 4 3 2 1 0									
R/W	0	0	0	0	0	EN_F	0				

EN PSPD: PS PD select 0x0:

None

0x1 : Select PD1 (Default) 0x2 : Select PD2 0x3 : Select PD1 and PD2

WHE0146UC

PS TIME

0x09	0x09 PS_TIME, PS integrated time (Default = 0x00)										
BIT	7	7 6 5 4 3 2 1 0									
R/W		ITC_PS PSCONV									

ITC PS: It controls the number of LED pulse in PS function mode.

0x0: 1 pulse (Default)

0x1: 2 pulses 0x2: 3 pulses

0xF: 16 pulses

PSCONV: This register controls the conversion time of AD converter at PS mode (TPS), and the resolution of output data (PS_DATA, IR_DATA).

0x0: The maximum count of **output data is** 255, 1 time unit (default).

0x1: The maximum count of **output data is** 511, 2 time units.

0xF: The maximum count of **output data is** 4095, 16 time unit.

The maximum count of **output data is** (256 x time unit) -1.

The conversion time of PS function (TPS) is decided by ITW PS, ITC PS and PSCONV. TPS = $1.251 + 0.0005 \times (ITC PS + 1) \times [144 + 64 \times (ITW PS + 1)] + 0.256 \times (PSCONV + 1)$ (ms)

PS_FILTER

0x0A		PS_FILTER, PS integrated time (Default = 0xBF)									
BIT	7	7 6 5 4 3 2 1 0									
R/W	1	0	1	1	NUM_AVG						

NUM AVG: This register sets the numbers of data to do average before output.

0x0: The output data is the average data of one time.

0x1: The output data is the average data of two times.

0xF: The output data is the average data of sixteen times. (Default)

The total conversion time (TTOTAL) of device is decided by TPS, and **NUM AVG**.

TTOTAL = (NUM AVG + 1) * T_{PS} (ms)

- 14

PERSISTENCE

0x0B		PERSISTENCE, PS persistence setting (Default = 0x11)									
BIT	7	7 6 5 4 3 2 1 0									
R/W		PRS	_PS		0	0	0	1			

PRS PS: This register sets the numbers of similar consecutive PS interrupt events before the interrupt pin is triggered.

0x0: Every PS conversion is done.

0x1: 1 PS interrupt event is asserted. (Default)

......

0xF: 15 consecutive PS interrupt events are asserted

PS_THRES_L

0x10 0x11		PS_THRES_L, PS low interrupt threshold (Default = 0x0000)								
BIT	7	7 6 5 4 3 2 1 0								
R/W		PS_THRE_LL								
R/W		PS_THRE_LH								

This register sets the lower threshold value of PS interrupt. The interrupt algorithm compares the selected PS data and PS threshold value.

PS THRE LL: PS lower interrupt threshold value, LSB. (Reg. 0x10) **PS THRE LH**: PS lower interrupt threshold value, MSB. (Reg. 0x11)

PS THRES H

0x12 0x13		PS_THRES_H, PS high interrupt threshold (Default = 0xFFFF)								
BIT	7	7 6 5 4 3 2 1 0								
R/W		PS_THRE_HL								
R/W		PS_THRE_HH								

This register sets the high threshold value of PS interrupt. The interrupt algorithm compares the selected PS data and PS threshold value.

WHE0146UC

PS THRE HL: PS high interrupt threshold value, LSB. (Reg. 0x12) **PS THRE HH**: PS high interrupt threshold value, MSB. (Reg. 0x13)

PS OFFSET

0x14 0x15		ERROR_FLAG, Error flag status							
BIT	7	7 6 5 4 3 2 1 0							
R/W		PS_OFFSET_L							
R/W				PS_OF	FSET_H				

This register used to calibrate the device's cross talk. The **PS_DATA** should be closed to zero with no object. The PS_OFFSET is subtracted from the measured data before it output to. PS_DATA.

PS_OFFSET_L: PS low offset value, LSB. (Reg. 0x14) **PS_OFFSET_H**: PS high offset value, MSB. (Reg. 0x15)

ERROR FLAG

0x17		ERROR_FLAG, Error flag status.							
BIT	7	6	5	4	3	2	1	0	
R	PS_ REDY	0	0	ERR_ PSD	ERR_ PSL	0	0	0	

This register indicates the PS data status. If the PS data is outside of measurable range, the corresponding error flag will set to one. That also means the data is invalid.

Every PS conversion is done, the PS_REDY flag will set to 1. It notifies the user that the sensor data is updated.

PS_DATA

0x1A 0x1B			PS	S_DATA, PS	output da	ta		
BIT	7	7 6 5 4 3 2 1 0						
R		PS_DATA _L						
R				PS_D/	ATA_H			

The PS conversion result is written into PS_DATA.

WHE0146UC

For insuring the data in the register comes the same measurement, the high byte data will be latched when the low byte data has being accessed until the high byte data has be read.

CALIB_CTRL

0x26		CALIB_CTRL, PS calibration control (Default = 0x0F)							
BIT	7	6	5	4	3	2	1	0	
R/W	0	0	0	CALIB_ BIN_SEL	1	1	1	1	

CALIB_BIN_SEL: It select calibration bin-search source.

0x0: Automatic calibration (Default)

0x1: Manual

CALIB_STAT

C)x28		CALIB_STAT, PS calibration status (Default = 0x00.							
	BIT	7	6	5	4	3	2	1	0	
F	R/W	0	0	0	0	0	0	ERR_ CALIB	CALIB_ FINSH	

PS_CALIB_SAT: It shows if calibration bin-search result equal to 0xFF.

CALIB_FINSH: It shows the calibration function is done. Write zero to clear the flag.

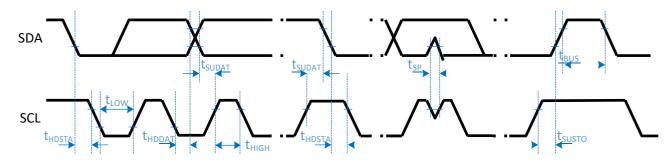
MANU_CDAT

0x2A 0x2B		MANU_CDAT, Manual calibration data. (Default = 0x0000)									
UXZD											
BIT	7	7 6 5 4 3 2 1 0									
R		MANU_CDAT_L									
D				0				MANU_			
K				0				CDAT_H			

The manual calibration data is setting by user to do crosstalk calibration

WHE0146UC

AUTO_CDAT


0x2C 0x2D			AUTO_CE	OAT, Autom	atic calibra	ntion data.			
BIT	7	6	5	4	3	2	1	0	
R		AUTO_CDAT_L							
R				0				AUTO_C	
K				U				DAT_H	

The automatic calibration data is setting by chip to do crosstalk calibration. When calibration function is finished, the calibration data will show on this register

I²C Interface Timing Characteristics

This section will describe the protocol of the I^2C bus. For more details and timing diagrams please refer to the I^2C specification.

Doromotor (*)	Cumbal	Fast	Unit	
Parameter (*)	Symbol	Min	Max	Onit
SCL clock frequency	f _{SCL}	100	400	kHz
Bus free time between STOP condition and START condition	t _{BUS}	1.3		μs
LOW period of the SCL clock	t _{LOW}	1.3		μs
HIGH period of the SCL clock	t _{HIGH}	0.6		μs
Hold time (repeated) START condition	t _{HDSTA}	0.6		μs
Set-up time (repeated) START condition	t _{SUSTA}	0.6		μs
Set-up time for STOP condition	tsusto	0.6		μs
Data hold time	t _{HDDAT}	50		ns
Data set-up time	t _{SUDAT}	100		ns
Pulse width of spikes which must be suppressed by the input filter	t _{SP}	0	50	ns
Rise time of both SDA and SCL signals		20 x VDD/5.5	300	ns
Fall time of both SDA and SCL signals		20 x VDD/5.5	300	ns

^(*) Specified by design and characterization; not production tested.

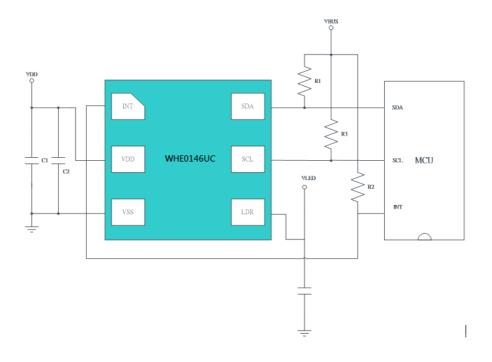
^(**) All specifications are at $V_{\text{Bus}} = 3.3 \text{V}$, $T_{\text{ope}} = 25 ^{\circ}\text{C}$, unless otherwise noted.

Note:

I²CBus Clear

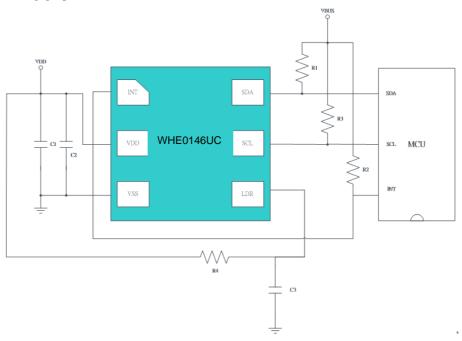
In the unlikely event where the clock (SCL) is stuck LOW, the preferential procedure is to reset the bus using the HW reset signal if your I2C devices have HW reset inputs. If theI2C devices do not have HW reset inputs, cycle power to the devices to activate the mandatory Internal Power-On Reset (POR) circuit.

If the data line (SDA) is stuck LOW, the master should send nine clock pulses. The device that held the bus LOW should release it sometime within those nine clocks.


I²C General Call Software Reset

Following a General Call, (0000 0000), sending 0000 0110 (06h) as the second byte causes software reset. This feature is optional and not all devices will respond to this command. On receiving this 2-byte sequence, all devices designed to respond to the general call address will reset and take in the programmable part of their address.

Precautions have to be taken to ensure that a device is not pulling down the SDA or SCL line after applying the supply voltage, since these low levels would block the bus.


Application Circuit

Separate Power Supplies

Single Power Supply

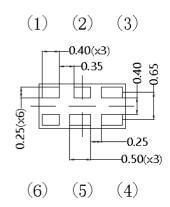
The capacitors (C1, C2) are required for sensor power supply. The capacitors should be placed as close as possible to the device. The high frequency AC noises can be shunted to the ground by the capacitors. The transient current caused by digital circuit switching also can be handled by the capacitors. A typical value $0.1 / 1 \, \mu F$ can be used.


The capacitors (C3) is required for LED power supply. A typical value $2.2\mu\text{F}$ is used. The extra resistor (R4) is required when using single power supply. A typical value 22Ω is used.

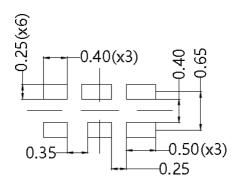
The pull-up resistors (R1, R2) are required for I^2C communication. At fast speed mode (400kHz/s) and VBUS = 3V, $1.5k\Omega$ resistors can be used. The pull-up resistor (R3) is also required for the interrupt, a typical value between $10~k\Omega$ and $100~k\Omega$ can be used.

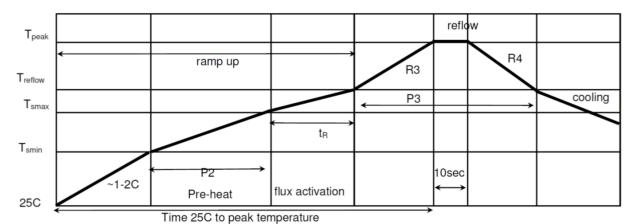
Package Outline Dimensions

Top View


Front View

Right Side View


Bottom View


Pin-out	Name
(1)	INT
(2)	VDD
(3)	VSS
(4)	LDR
(5)	SCL
(6)	SDA

Recommended Land Pattern

Recommended Reflow Profile

	Peak temperature (Tpeak)	255-260C (max) ; 10sec
Pre-Heat	Temperature min (Tsmin) Temperature max (Tsmax) P2: (Ts min to Ts max)	150C 2C/sec 150C-217C 100s to 180s 90-110s
Time maintain above	Temperature (T _{reflow}) Time (P3) R3 slope (from 217C -> peak) R4 slope (from peak -> 217C)	217C 60-90sec 2C/sec [typ] -> 2.5C/sec (max) -1.5C/sec [typ]-> -4C/sec (max)
	Time to peak temperature	480s max
	Cooling down slope (peak to 217C)	2-4C/ sec